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1 Overview

The gibbonsecr software package uses Spatially Explicit Capture–Recapture (SECR) methods to
estimate the density of gibbon groups from acoustic survey data. This manual begins with a brief introduction
to the theory behind SECR and then describes the main components of the user interface.

Click here to download a .pdf version of the manual.

2 Introduction to SECR

Over the past decade SECR has become an increasingly popular tool for wildlife population assessment
and has been used to analyse survey data for a wide range of taxa. The main advantage of SECR over
traditional capture-recapture techniques is that it allows direct estimation of population density rather than
abundance. Traditional capture-recapture methods can only provide density estimates through the use of
separate estimates or assumptions about the size of the sampled area. In SECR however, density is estimated
directly from the survey data by using information contained in the pattern of the recaptures about the
spatial location of animals. By extracting spatial information in this way, SECR does not require the exact
locations of the detected animals to be known in advance.

2.1 Basic setup

The basic data collection setup for an SECR analysis consists of a spatial array of detectors. Detectors
come in a variety of different forms, including traps which physically detain the animals, and proximity
detectors which do not. The use of proximity detectors makes it possible for an animal to be detected at
more than one detector (i.e. recaptured) during a single sampling occasion.

The plot below shows a hypothetical array of proximity detectors, with black squares representing detections
of the same animal (or the same group in the case of gibbon surveys) and grey squares representing no
detections.

Figure 1:

The pattern of the detections for this group (i.e. the pattern of the recapture data) contains information
about its true location; an intuitive guess would be that the true location is somewhere near the cluster of

3

http://dkidney.github.io/gibbonsecr/docs/index.pdf


Figure 2:

black detectors. The plot below shows a set of probability contours for this unknown location, given the
recapture data.

In the case of acoustic gibbon surveys the listening posts can be treated as proximity detectors and the same
logic can be applied to obtain information on the locations of the detected groups. However, the design shown
in the figure above would obviously be impractical for gibbon surveys. The next figure shows probability
contours for a more realistic array of listening posts where a group has been detected at two of the posts.

Figure 3:

The main conclusion here is that using smaller arrays of detectors results in less information about the
unknown locations.

2.2 Estimated bearings

SECR also allows supplementary information on group location to be included in the analysis in addition
to the recapture data, for example in the form of estimated bearings to the detected groups. The next
figure illustrates how taking account of information contained in the estimated bearings can provide better
quality information on unknown locations.
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Figure 4:

Using estimated bearings in this way can lead to density estimates that are less biased and more precise
than using recapture data alone (although the degree of improvement will depend on the precision of the
bearing esitmates). Since the precision of bearing estimates is usually unknown, SECR methods need to
estimate it from the data. This requires the choice of a bearing error distribution. The figure below
shows two common choices of distribution for modelling bearing errors – the von Mises and the wrapped
Cauchy. The colour of the lines in these plots indicate the value of the precision parameter (which needs to
be estimated from the survey data). In both cases, th larger the value of the precision parameter the greater
the precision. The mean error is shown by the dotted vertical lines and is assumed to be zero (i.e. the bearing
estimates are assumed to be unbiased).

Figure 5:

2.3 Estimated distances

Estimated distances to detected groups can also be used to decrease the bias and improve the precision of the
density estimate. Again, the degree of improvement will depend on the precision of the distance estimates.
The figure below shows probability contours for the true location of a hypothetical detection when estimated
distances are used (but not estimated bearings).
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Figure 6:

The next figure shows probability contours for the true location, but this time using both estimated distances
and estimated bearings.

Figure 7:

Two choices of distribution are available in gibbonsecr for modelling estimated distances: the gamma
distribution and the log-normal distribution. The plots below illustrate how the value of the parameter of
these distributions (which needs to be estimated from the survey data) relates to the precision of the distance
estimates. The dashed vertical lines indicate the true distance. Note that, for a given parameter value, the
precision of the distance estimates decreases as the true distance increases.

2.4 Detection functions

Another key feature of SECR is that the probability of detecting a (calling) gibbon group at a given location
is modelled as a function of distance between the group and the listening post. This function – referred
to as the detection function – is typically assumed to belong to one of two main types of function: the
half normal or the hazard rate. The specific shape of the detection function depends on the value of its
parameters, which need to be estimated from the survey data. The half normal has two parameters: g0 and
sigma: the g0 parameter gives the detection probability when the distance between group and detector is
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Figure 8:
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zero, and the sigma parameter controls the width of the function. The hazard rate has three parameters: g0,
sigma and z. The g0 and sigma parameters have the same interpretation as for the half normal, and the
additional parameter z controls the shape of the ‘shoulder’ and allows a greater degree of flexibility. The
figure below illustrates the shape of these detection functions for a range of parameter values.

Figure 9:

2.5 Detection surface

Associating a detection function with each listening post allows us to calculate the overall probability of
detection – i.e. the probability of being detected at at least one listening post – for any given location. The
figure below illustrates this concept using a heat map of a detection surface for a single array of listening
posts, with color indicating the overall detection probability.
The region near the centre of this surface is close to the listening post array and has the highest detection
probability. In this case, an group located close to the detectors will almost certainly be detected. The
detection probability decreases as distance from the detectors increases.

2.6 Effective sampling area

The shape of the detection surface is related to the size of the effective sampling area. Since the region
close to the detectors has a very high detection probability, most groups within this region will be detected
and it will therefore be sampled almost perfectly. However, regions where the detection probability is less than
1 will not be completely sampled as some groups in these areas will be missed. The figure below illustrates
this idea for a series of arbitrary detection surfaces.
The first plot in this figure shows a flat surface where the detection probability is 0.5 everywhere. In this
scenario every group has a 50% chance of being detected. If the area covered by the surface was 10km2, then
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Figure 10:

Figure 11:
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the effective sampling area would be 10km2 x 0.5 = 5km2. Using this detection process we would expect to
detect the same number of groups as we would if we had perfectly sampled an area of 5km2. In the second
plot, half of the area is sampled perfectly and the other half is not sampled at all, so this has the same
effective sampling area as the first plot. The third plot has a detection gradient and isn’t as intuitive to
interpret. However, the general to calculate the effective survey area is to calculate the volume under the
detection surface. The third plot has the same volume as the other two, so it has the same effective area.

3 Loading the software

TODO

3.1 Launch from R

3.1.1 Install R

Make sure you have the latest version of R installed.

Download R for Windows

Download R for Mac

Optionally you can also install RStudio which is a more user-friendly interface to R and (e.g. it supports
syntax highlighting and auto-completion).

Download RStudio

3.1.2 Install prerequisites

TODO

3.1.3 Install gibbonsecr

TODO

3.1.4 Launch the interface

Once everything is installed you can launch the user interface by opening R (or RStudio) and typing the
following lines into the console.

library(gibbonsecr)
gui()

3.2 Launch from a desktop icon

TODO
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3.2.1 Download the files

TODO

3.2.2 Make a shortcut icon

TODO

4 Data import

The first step in conducting an analysis is to import your survey data. This is done via the Data tab, shown
in the screenshot below.

Figure 12:

4.1 Data files

As a minimum requirement you need to prepare a detections file and a posts file, both of which must be
in .csv format. You can also include an optional covariates file (which also needs to be in .csv format).
Advice on how to structure these files is given below. The file paths to your data files can be entered manually
into the text entry boxes in the CSV files section, or you can navigate to the file path using the ... button.
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4.1.1 Detections

The detections file needs to contain a record of each detection, with one row per detection. For example, if
group 1 was recorded at listening posts A and B then this would count as two detections. This file needs to
have the following columns:

• array – Id for the array
• occasion – Id for day of the survey (typically an integer from 1 to 4)
• post – Id for the listening post
• group – Id for the detected group
• bearing – Estimated bearing to the detected group
• distance – Estimated distance to the deteted group (optional)

The table below shows example entries for detections made at an individual array during a one-day (i.e. single-
occasion) survey.

Table 1: Example detections data

array occasion post group bearing
6 1 A 6_A 170
6 1 B 6_B 192
6 1 B 6_A 180
6 1 B 6_C 40
6 1 C 6_B 220
6 1 C 6_C 36

4.1.2 Posts

The posts file contains information on the location and usage of the listening posts. This file needs to have
one row per listening post and should contain the following columns:

• array – Id for the array
• post – Id for the listening post
• x – Longitude coordinate (in metric units)
• y – Latitude coordinate (in metric units)
• usage – Indicator showing the sampling days on which the posts were manned E.g. if on a 3-day survey

a particular post was manned on day 1 and day 3 but for some reason not on day 2, then 101 would be
entered in the usage column for that post. The number of digits in the usage column should be equal
to the number of sampling days for the array.

The table below shows example entries for posts at one array during a one-day survey.

Table 2: Example posts data

array post x y usage
6 A 690085 1557174 1
6 B 690570 1557163 1
6 C 691082 1557128 1
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4.1.3 Covariates

The covariates file should contains values for any other variables associated with the survey data. This file
needs to have one row per samping day for each listening post and should contain at least the following
columns:

• array – Id for the array
• post – Id for the listening post
• occasion – Id for day of the survey (typically an integer from 1 to 4)

These columns can all be used as covariates themselves, but any additional covariates should be added using
additional columns. Use underscores _ instead of full stops for the covariate names.

The table below shows example covariates at a single array for a one-day survey.

Table 3: Example covariates data

array post occasion month observer
6 A 1 June Rod
6 B 1 June Jane
6 C 1 June Freddy

4.2 Data details

Once the paths to the .csv files have been entered, select the appropriate units from the Data details
dropdown boxes for your estimated bearings data (and estimated distances data if it was collected). Note
that the current version of the software only allows Type to be set to continuous since interval methods for
bearings and distances have not yet been implemented.

4.3 Data buttons

Once the paths to your .csv files have been entered and the data units have been checked, click the Import
button to import the data. If the import is successful then a summary print out should appear in the output
window on the right hand side. You can re-print this summary at any time by pressing the Summary button.

Example output following a successful import is shown below.

Detections:
array 2 3 4 5 6 7 10 11 12 13 15 16 17 total

ngroups 9 1 4 7 3 2 9 6 10 7 10 5 4 77
ndetections 16 3 8 12 6 3 14 9 14 12 14 6 6 123

ndays 1 1 1 1 1 1 1 1 1 1 1 1 1 13
nposts 3 3 3 3 3 3 3 3 3 3 3 3 3 39

Recaptures = 53.2 %

Auxilliary data:
Units Type Details

bearings degrees continuous range: 11 to 360

Covariates:
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Level Name Type
array 'array' category

'month' category
post 'habitat' category

'observer' category
Details
13 levels: 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15,...
2 levels: July, June
2 levels: primary, secondary
3 levels: Freddy, Jane, Rod

5 Making a mask

The SECR model fitting procedure requires the use of a mask, which is a fine grid of latitude and longitude
coordinates around each array of listening posts. When an SECR model is fitted, the mask is used to provide
a set of plausible candidate locations for each detected group. It is important to select a suitable mask to
avoid unreliable results. Mask specifications are controlled via the Mask tab, shown in the screenshot below.

Figure 13:

5.1 Area and resolution

Two main settings need to be considered when defining a mask – the buffer and the spacing. These are
specified in the first section of Mask tab.
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5.1.1 Buffer

The buffer controls the area of the mask and represents the maximum distance between each mask point and
the closest listening post. It needs to be large enough so that the region it encompasses contains all plausible
locations for the detected groups, but it shouldn’t be too large or too small.

• Buffer distances that are too small will lead to biased estimates of the effective sampling area and
therefore biased estimates of density – the effective sampling area will be underestimated and the
density will be overestimated

• Buffer distances that are too large will lead to increased numbers of mask points, with no additional
gain in term of loss of bias, but extra cost in terms of computing time

The ideal buffer distance is the distance at which the overall detection probability drops to zero. A good
way to check this is to look at a plot of the detection surface which you can plot after fitting a model (see
the Plotting results section below). The detection surface plot produced by gibbonsecr is the same size as
the mask, so the colour at the edge of the plot will indicate the overall detection probability at the buffer
distance. If the detection probability is greater than zero at the buffer distance then you should increase the
buffer distance, re-fit the model and re-check the detection surface plot.
To illustrate this issue, the figure below shows a series of detection surfaces from three different models that
were fitted using mask buffers of 1000m, 10000m and 5000m respectively.

Figure 14:

The buffer in the first plot is too small because the detection probability at the edge of the mask is much
greater than zero. It is therefore extremely likely that the true locations of some of the detected groups will
lie outside the buffer zone. The buffer in the second plot is much larger than that in the first plot and the
detection probability at the edge of the mask is zero. We would expect the bias of the density estimate in the
second plot to be low, and the estimate is around 75% lower than the estimate in plot 1, suggesting that the
estimate in plot 1 is a severe overestimate. The buffer in the third plot is intermediate between the other two.
The detection probability is still zero at the buffer distance and the estimated density is the same as in plot
2, but the computation time is much shorter than for plot 2. In this case the buffer in the third plot would
be preferred.

5.1.2 Spacing

The spacing controls the resolution of the mask and represents the distance between adjacent mask points.
Decreasing the spacing will increase the resolution and increase the total number of mask points. Smaller
spacings therefore provide a greater number of candidate locations and lead to more reliable results. However,
increasing the number of mask points has a cost in terms of computing time and if the spacing is too small
then models may take a very long time to run. As a general rule of thumb, try to use the smallest spacing
that is practical given the speed of your computer, but try not to use spacings larger than 250m.
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5.2 Shapefiles

The Shapefiles section of the Mask tab allows the import of ESRI (i.e. .shp) shapefiles. One region shapefile
and two habitat shapefiles can be imported. The file paths of the .shp files can be typed into the entry
boxes, or the ... button can be used to browse to the file location. Once the file paths of the shapefiles have
been entered, thee shapefiles can be imported and plotted using the Import and Plot buttons.

Note: make sure that the latitude and longitude coordinates are in the same metric units as
used in the posts .csv file.

5.2.1 Region

This should be a polygon shapefile giving the boundary of the survey area. The checkbox on the right hand
side determines whether the shapefile is used when constructing the mask. If the Region checkbox is checked,
then the mask will be clipped so that no mask points lie outside of the region. This should only be used if
the Region represents a physical boundary – i.e. when the area enclosed by the Region contains all possible
locations.

5.2.2 Habitat

These should be polygon or point shapefiles containing attribute data in the form of spatial covariates (for
use in constructing model formulas). If the checkbox for a Habitat shapefile is checked, then the spatial
covariates will be attached to the mask. Any mask points that can’t be matcehd to spatial covariates will be
deleted, so it’s important to make sure that each Habitat shapefiles encompasses all potential group locations.

5.3 Mask buttons

Once the buffer and spacing have been specified and any shapefiles imported, the mask can be constructed
using the Build button. Example console output following a successful mask build is shown below.

Summary stats:
buffer 6000 m
spacing 250 m
npoints 2000 (average per array)
area 125 sq km (average per array)

Covariates:
Name Type Details
'habitat' category 2 levels: primary, secondary

6 Model fitting

Once you have made a mask you can start fitting some SECR models using the Model tab, shown below.

Model specification is split into two steps: (i) choosing what kind of detection function and bearing error
distribution you want to use, and (ii) deciding whether to fix any parameter values or model them using the
available covariates. These steps are described in more detail below.
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Figure 15:

6.1 Model options

The first section in the Model tab contains dropdown boxes where you can choose between different detection
functions and different distributions for the estimated bearings and distances.

• Detection function – choose either the half normal (the default) or the hazard rate
• Bearings distrbution – choose from the von Mises (the default), the wrapped Cauchy, or none
• Distances distribution – choose from the gamma (the default), the log-normal, or none

Setting the bearings/distances distribution to none means that the bearings/distances data will be ignored in
the analysis. Setting both bearings and distances distributions to none will result in a conventional SECR
model being fitted using only the recapture data.

6.2 Model parameters

The next section in the Model tab provides various options for refining your model. Each row in this section
relates to a particular parameter in the SECR model.

• D – group density (number of groups per square kilometre)
• g0 – detection function intercept parameter
• sigma – detection function scale parameter
• z – detection function shape parameter (hazard rate only)
• bearings – bearing estimates distribution parameter
• distances – distances estimates distribution parameter
• pcall – group calling probabiity (per day)

17



Hovering the cursor over the row labels on the user interface will open a temporary help box giving a reminder
of these definitions.

6.2.1 Formulas

If you wish to estimate a particular parameter in your analysis then you need to make sure that the Formula
entry box for that parameter is activated by clicking on the radio button on the right hand side of the entry
box. If the Formula entry box is activated but left blank then a single coefficient for that parameter will
be estimated (i.e. an intercept-only model). If you wish to specify a formula for a particular parameter you
need to click the radio button on the right hand side of the formula entry box for that parameter, then type
the names of the covariates you wish to use into the entry, separated by + signs. E.g. to model the sigma
parameter using habitat and weather you would type the following into the Formula box for sigma:

habitat + weather

A note to experienced R-users: As well as + you can also the * and : operators to specify formulas. You
can also use gam functions s, te, ti and t2 (from the mgcv package) for numeric variables. However, the use
of as.factor and as.numeric to coerce variables, and -1 to change the model contrasts, is not supported.

6.2.2 Covariate levels

Covariates can be used when constructing formulas for the various model parameters using the model argument
in the gfit function. However, some parameters can only be modelled with certain types of covariates.

Covariates can be divided into the following types, according to the level at which they vary:

• array-level - These are consistent within arrays. All listening posts and sampling occasions for a given
array will have the same value for an array-level covariate, but values vary between arrays. For example,
season is likely to be an array-level covariate, since it is highly unlikely that consecutive sampling
occasions at a given array will overlap with more than one season.

• trap-level - These are consistent within listening posts for a given array. All sampling occasions for
a given listening post will have the same value for a trap-level covariate. For example, habitat and
elevation are likely to be trap-level covariates since they may vary between listening posts but will be
consistent across occasions.)

• occasion-level - These are consistent within sampling occasions for a given array. All listening posts
in an array will have the same value for an occasion-level covariate. For example, weather is likely to be
an occasion-level covariate since it will probably be the same for all listening posts for a given occasion
at a given array but may vary between occasions.

• trap-occasion-level - These can vary between listening posts and between sampling occasions. For
example, observer might be a trap-occasion-level covariate since observers will (always) vary between
listening posts for a given occasion at a given array, and they may also vary between occasions for a
given listening post at a given array.

• mask-level - These are spatial covariates and can vary across mask points. Mask-level covariates from
GIS polygon and point files can be imported and attached to mask objects using the import_shp and
addCovariates functions.

The table below shows which covariates can be used to model which parameters.
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Parameter Covariate level
D array, mask
g0 array, trap, occasion, trap-occasion
sigma array, trap, occasion, trap-occasion
z array, trap, occasion, trap-occasion
bearings array, trap, occasion, trap-occasion
distances array, trap, occasion, trap-occasion
pcall array, occasion

6.2.3 Fixing parameter values

Sometimes you many not want or need to estimate a particular parameter, in which case you can fix its value.
To do this, click on the radio button on the right hand side of the Fixed entry box and type the value of the
parameter in the box.
A general point to bear in mind when fixing any parameter is that it will generally lead to a more precise
density estimate (i.e. one with narrower confidence intervals). If the fixed parameter is known with a high
degree of certainty then this would be a desirable effect. However, if there is uncertainty over the true value of
that parameter (e.g. you may have used an estimate from a previous study) then this will not be incorporated
into the SECR results and the precision of the density estimate will be overestimated (i.e. the confidence
intervals generated by the software will be too narrow).

6.2.4 Estimating g0

For one-day surveys the only option allowed by the software is to fix g0 at 1. This is because when the
listening post is zero distance from a calling group the probability of detecting it is extraordinarily unlikely
to be anything other than 1. (Remember that the g0 parameter gives the detection probability for a calling
group at zero distance from the listening post).
For multi-day surveys however, the movement of groups between consecutive sampling days means that we
have to redefine group ‘location’ as being the average location of the group. As a result, g0 needs to be
reinterpreted as the probability of detecting a calling group at zero distance from the average location. In
this case it is much more likely that the detection probability for a calling group whose average location is
zero distance from the listening post will be less than one. This is because a group is unlikely to always be at
its average location during a multi-day survey (unless it happens not to move). For multi-day survey data it
is therefore a good idea to estimate g0.

6.2.5 Estimating calling probability

For one-day surveys, pcall can’t be estimated so the only option is to provide a fixed value. By default,
pcall is fixed at 1 for one-day surveys, which means that the D parameter can be interpreted as the density
of calling groups, rather than the density of groups. However, the software allows you to change this value
(e.g. you may have prior knowledge of the calling probability for the study species) in which case the density
parameter can be reinterpreted as the density of groups. For one-day surveys, changing the pcall value
will result in a direct scaling of the density estimate. For example, if you had an estimated calling group
density of 5, changing the fixed value for pcall to 0.5 and re-fitting the model would result in a group density
estimate of 10.
For multi-day surveys there are three possible options for dealing with the pcall parameter when analysing
your data.

1. Estimate pcall from the survey data – This requires that the survey data contain temporal
recaptures – i.e. the group IDs should indicate which groups were detected on more than one survey day.
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The temporal recapture data needs to be reliable for this method to work. Note that the SECR software
considers data from each array independently, so you only need to identify the temporal recaptures
within arrays (and not between arrays).

2. Fix pcall to a known value – E.g. using data from a previous survey. Bear in mind that fixing
pcall to a value that is too low will result in a overestimate of group density. Furthermore, remember
that fixing the value of pcall is likely to lead to an overestimate in the precision of your group density
estimate.

3. Fix pcall to 1 and estimate calling group density – This can be done by treat the data from
each survey day independently. The only way to do this currently is to modify the array and occasion
columns in your data files before you import the data. The values in the array columns should be
edited so that the IDs are all unique – for example, array “1” for occasion 1 could be re-labelled “1_1”,
array “1” for occasion 2 could be re-labelled “1_2”, etc. All entries in the occasion columns should
be set to 1, and all entries in the usage column of the traps file should be set to “1”. By doing this
the SECR software will treat each occasion independently and ignore any temporal recaptures. should
be set so that the software treats the data for each array separately. Note that future versions of the
software will hopefully automate this process.

6.3 Model buttons

There are four button at the botton of the Model tab:

1. Fit – Use this button to fit the model once you are happy with your model specification. Once your
model is fitted a summary will appear in the output console.

2. Summary – Use this button to reprint the model summary
3. Coef – This prints a summary of the raw model coefficients
4. Predict – This allows you to predict the value of each model parameter. If you have used covariates in

model formulas a pop-up box will appear allowing you to choose specific values of covariates (e.g. you
may wish to predict density for all levels of a habitat covariates)

7 Plotting results

Once a model has been fitted, the results can be plotted from the Plots tab, shown below.

This tab currently has five plotting options:

1. Detection function - always available
2. Bearing error distribution - only available if a bearings model has been fitted
3. Distance estimates distribution - only available if a distances model has been fitted
4. Detection Surface - always available
5. Density surface - always available

The first three plots have the following options for plotting confidence intervals:

• none - no intervals plotted
• delta method - confidence intervals calculated using a numerical approximation – this method is

quicker to run than the bootstrap, but may be unreliable for more complex models
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Figure 16:

• bootstrap - confidence intervals calulated using a parametric bootstrap (resampling from the estimated
sampling distributions of the model coefficients) using 999 resamples – this method may take a little
longer to run but should be more reliable than the delta method.

The detection surface and density surface plots also require the selection of an array. The detection surface
plot plots individual arrays, whereas the density surface plot needs to use a single set of array-level covariates.

7.1 Detection function

Example plots of fitted half normal detection functions are shown below, with and without confidence
intervals.

7.2 Estimated bearings distribution

Example plots of estimated von Mises bearing error distributions are shown below, with and without
confidence intervals.

7.3 Estimated distances distribution

Example plots of estimated gamma estimated distances distributions are shown below, with and without
confidence intervals (using an example true distance of 500m).
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Figure 17:

Figure 18:
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Figure 19:

7.4 Detection surface

An example plot of a estimated detecton surface using the half normal detection function is shown below.

Figure 20:

7.5 Density surface

An example plot of a estimated density surface using a cubic regression spline of lattitude and longitude – D
~ s(x, y, k = 4) – is shown below.
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Figure 21:
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8 Model selection

An important element of statistical modelling is choosing a preferred model from a number of candidate
models. For example, you may get a slightly different density estimate when using the hazard rate detection
function instead of the half normal detection function. How do you decide which model, and therefore which
density estimate, should be preferred?

8.1 AIC

A common way of choosing between competing models is to use something called the AIC score. This is a
number that can be calculated from the fitted model which tries to measure how well the model balances
having a good fit to the data whilst not being overly complex. The AIC score can be found at the bottom of
the model summary printout (which is displayed after pressing the model Summary button at the bottom of
the Model tab).

When using AIC it is important to bear in mind the following points:

• Lower AIC scores are preferred. For example, if model A has an AIC score of 10, and model B
has a score of 100, then model A would be preferred to model B.

• Negative scores are preferred to postitive scores. For example, if model A has an AIC score of
-10 and model B has a score of -100, then model B would be preferred to model A.

• Diffences of 2 or more are meaningful. This is a general rule-of-thumb for deciding between
models with different number of coefficients. If the difference is less than this then you should be
conservative and keep the model with the fewest coefficients. For example suppose you fitted model A
with an intercept-only formula for density (i.e. no covariates) which had an AIC of 100. Then suppose
you fitted a model B with habitat as a covariate for density (e.g. D ~ habitat) which had an AIC of 99.
The difference is only -1 which isn’t a big difference, and according to the rule of thumb the difference
isn’t large enough to prefer model B over model A. Now imagine that you fitted a third model, model C,
using altitude as a covariate for density (e.g. D ~ altitude) which had an AIC of 95. The difference
between model A and model C is 5, so according to the rule of thumb model C would be preferred.

• Only models fitted to the same data can be compared using AIC. For example, you could
use AIC to help you decide whether or not to use the von Mises distribution or the Wrapped Cauchy
distribution to model the bearing errors, because both models would have been fitted using the estimated
bearings data. However you could not use AIC to compare two models where one used a bearing error
distribution and one used no bearing error distribution, since the estimated bearings data would be
used in the first model but ignored in the second models (the precision of the density estimate might be
a better to make a decision in this case). For a similar reason, you also should not use AIC to compare
models fitted using different masks.

• The magnitude of the AIC score tells you nothing about how good a model is. The difference
in AIC between two competing models helps you decide which one is better, but they might both be
poor models. Unfortunatley on of the disadvantages of SECR is that there is currently no means for
calculating model goodness-of-fit statistics.

8.2 Model plausibility

Whilst AIC can be extremely useful it shouldn’t be used blindly and you should also ensure that any preferred
model is also plausible. For example, model A might have a lower AIC score than model B, but if model A
looks entirely unrealistic (e.g. given your knowledge of the study system) then you should discard it. For
example, a fitted bearing error distribution which implied that errors as large as 180 degrees were highly
probable might be ignored if such an outcome is known to be very unlikely under normal field conditions.
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9 Menu Options

9.1 The Help menu

9.1.1 Example Data

This contains a link to data from a single-day survey of Nomascus annamensis. Clicking the link should
automatically load this data into the interface. It might be a good idea to explore this data first and have a
quick practice at fitting models before importing you own data.

9.2 The Workspace menu

9.2.1 Setting the working directory

This option allows you to specify a home directory for your project. Once it has been set, this will be the
default directory when browsing for files and saving workspaces.

9.2.2 Saving and loading workspaces

These options allows you to save the current session, including the mask and model, and re-load it for later
use. E.g. it may take a while to make a high resolution mask (especially if you import gis shapefiles) or fit a
model with several covariates and saving the workspace means you won’t have to repeat those steps every
time you re-open the software. Bear in mind that if you want to save a series of models you should save them
in separate workspaces (since each workspace contains a maximum of one fitted model).

10 Reporting bugs

TODO
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